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Mesoscopic fluctuations of the Loschmidt echo
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We investigate the time-dependent variance of the fidelity with which an initial narrow wave packet is
reconstructed after its dynamics is time reversed with a perturbed Hamiltonian. In the semiclassical regime of
perturbation, we show that the variance first rises algebraically up to a criticatdimféer which it decays. To
leading order in the effective Planck’s constdng;, this decay is given by the sum of a classical term
=exfd —2\t], a quantum term=2%A s exd -I't], and a mixed term=2 exg—(I'+\)t]. Compared to the behav-
ior of the average fidelity, this allows for the extraction of the classical Lyapunov expananta larger
parameter range. Our results are confirmed by numerical simulations.
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The fluctuations of a physical quantity often contain more(iii) the strong perturbation regim&>B with another
information than its average. For example, quantum signaGaussian deca(t) =exp(-B%?) [5]. This classification is
tures of classical chaos are absent of the average density bésed on the scheme of RES], which relates the behavior
states, but strongly affect spectral fluctuatiddg. In the  of M(t) to the local spectral density of eigenstategigfover
search for such signatures, another approach has been to the eigenbasis oH [5,9]. Accordingly, regime(ii) corre-
vestigate the sensitivity to an external perturbation that isponds to the range of validity of Fermi’s golden rule, where
exhibited by the quantum dynamif]. Going back to Ref. the local spectral density has a Lorentzian she{é,10.

[3], the central quantity in this approach is the LoschmidtQuantum disordered systems with diffractive impurities, on

echo[4], the fidelity the other hand, have been predicted to exhibit golden rule
decaye exd -I't] and Lyapunov decay exd —\t] in differ-
M(t) = [(olexpliHtlexd — iHot] o) |? (1)  enttime intervals for a single set of parame{dr2]. It is also

worth mentioning that regular systems exhibit a very differ-
ent behavior, where in the semiclassical regitig M(t)
nHecays as a power lajl3] (see also Ref[14]). Finally,

with which an initial quantum statey is reconstructed after
the dynamics is time reversed using a perturbed Hamiltonia

H=Ho+eV (we setfi=1). This approach proved very fruit- hije'in chaotic systems the averaging procedure has been
ful; however, most investigations d(t) (which we will  t5,nq o be ergodic, i.e., considering different stagsis
briefly summarize beloyvconsidered the properties of the gquivalent to considering different realizations kg or V,
averagefidelity M(t), either over differentifp, or different  the Lyapunov decay exists only for specific choices whiye
elements of an ensemble of unperturbed Hamiltonilgs has a well-defined classical meaning, like a coherent or a
(having, for instance, the same classical Lyapunov exponergosition statg4,11,15,16.
\) and/or perturbatioriV. Curiously enough, the variance Investigations beyond this qualitative picture have
a?(M) of the fidelity has been largely neglected so far. Thefocused on crossover regions between the regimes
purpose of this paper is to fill this gap. We will see that the(i) and (ii) [7] and deviations from the behavior
variances®(M) has a much richer behavior thaf(t), allow- (i) =exg—-min(I',M)t] due to action correlations in weakly
ing for the extraction of\ in a larger parameter range, and chaotic system§17]. Reference 18] provides the only ana-
exhibiting a nonmonotonous behavior with a non-self-Iytical investigation of the fluctuations d(t) to date. It
averaging maximal value(t.)/M(t,) = 1. shovys that, for classically Iargg perturbatiohis; B, M(t) is _
We first summarize what is known about the average fidominated by very few exceptional events, so that a typical
delity M(t) in quantum chaotic systems. Three regimes ofo’S fidelity is better described by edp(M)], anfdlthaﬂvl(t)
perturbation strength are differentiated by three energy scalé%oes ot fluctuate after the E_hrenfest tipes A In[ i .
[5]: the energy bandwidtB of Hy, the golden rule spreading We Will see that these conclusions do not apply to the regime
N B NE . ©) (ii) of present interest. While some numerical data for the
I'=2mwe’(¢, V| bp WPIA of an eigenstate¢,” of Ho  distribution ofM(t) in the weak perturbation regine were
over the eigenbasi§¢,} of H, and the level spacing presented in Ref19], we focus here on chaotic systems and
A=Bfig (her=1/Q) is the effective Planck’s constant, given investigate the behavior @?(M) in the semiclassical regime
by the ratio of the wavelength volume to the system’s vol-(ji).
ume). These three regimes ar@) the weak perturbation re- We first follow a semiclassical approach along the lines of
gime I'<A, with a typical Gaussian decaii(t)=exp(  Ref. [4]. We consider an initial Gaussian wave packet
=572), $2= (g Vdo)— (Wl VIvd), SP=TAhigk [3.6]  wo(r)=(mA) Yexifipo-(rgro)=Irs=ro2/212], and ap-
(corrections to this Gaussian decay have been discussed [moximate its time evolution by
Ref. [7]); (ii) the semiclassical golden rule reginde<I’
< B, where the deca)iexponenti_al with a rate set by the (r|exp(= iHot)| o) =fdr52 K?O(r,rt’,;t)%(r{)),
smallest ofI" and \, M(t) =exd-min(I",\)t] [4,5,8]; and s
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limit S>1 (we recall that actions are expressed in units of
h), Eq. (5) is dominated by terms that satisfy a stationary
phase condition, i.e., where the variation of the difference of
the two action phases

PHo= i‘lo(rlaro?t) - %O(rmrz;t) + 5:5004:"0;'[)

—§;7°(r0,r3;t), (63
oH = %(rmrl;t) - il(rzvroit) + %(rmrbt) - %(rsvroit),
(6b)

has to be minimized. These stationary phase terms are easily
FIG. 1. Diagrammatic representation of the squared ﬁdemyldentlfled from the diagrammatic representation as those

M2(t). where two classical trajectorissands’ of opposite direction
of propagation areontracted i.e., s=s’, up to a quantum
12 resolution given by the wavelength [23]. This is repre-

KHo(r,rl:t) = ——exdiSHo(r,r):t) —imud2]. (2 sented in Fig. 2 by bringing two lines together in parallel.

(1 roit) (2mi)¥2 HISSHrroit) ~imud2]. - (2) Contracting either two dashed or two full lines allows for an

The semiclassical propagator is expressed as a sum 0V%|IJ'T‘IOSI exact cancellation of the actions, hence an_almost
. . ) . ;s perturbation-independent contribution, up to a contribution

classical trajectorieglabeleds) connectingr andr in the L T . . :

: X . .__arising from the finite resolutiom with which the two paths

time t. For eachs, the partial propagator contains the action L .

. .. . overlap. However when a full line is contracted with a

mtegraIS;'(r ,ro;t) alongs, a Maslov indexus, and the de-

. - . . dashed line, the resulting contribution still depends on the
terminantC; of the stability matrix[21]. We recall that this : _ .
: : action 6S,=—€/V(q(t),t) accumulated by the perturbation
approach allows us to calculate the time evolution of smooth efV(a(v), 1) y P

localized wave packets up to algebraically long timesalong the classical patb, spatially parametrized ag(t).

*O(hzd) > te (with a>0) [22]. Since we are interested in the varianééM)=M2-M?2 (this
The fidelity then reads, is indicated by brackets in Fig),2ve must subtract the terms
contained inM? corresponding to independent contractions
M(t) = Jdrlf dré’f dr o (r o) o(r in each of the two subsefs;,s,,s;,S4) and (ss,Ss,S7,Sg)-
Consequently, all contributions @?(M) require pairing of
2 spatial coordinates; —r;|< v, for at least one pair of indices

. (3) i1j=1121314'
With these considerations, the four dominant contribu-

We want to calculateM(t). Squaring Eq(3), we see that tions to (M) are depicted on_the rlgh_t-hand S'df of Fig. 2.
The first one corresponds t®=s,=5;,=S3 and $;=5,=5S;

MZ2(t) is given by eight sums over classical paths and 12 which 1eqUires . —r- r-~r.. This gives a contribution
spatial integrations. Noting thal, is a narrow Gaussian _ -© q ez e g
wave packet, we first linearize all eight action integrals

V2 2d
aroundr, o?= (;) <f drydrg >, C§1
S(rroit) = S(rro;) = (rg=ro) - Ps. (4)
We can then perform the Gaussian integrations over the eight
initial positionsr(, rg, and so forth. In this wayM?(t) is

— t 4 ' N — ! :
expressed as a sum over eight trajectories connecijrig Wher'e 5(1)_51_'Ef0dt vV(q(t ))[qﬁ(t,) Os,(t )] arises from
four independent final points over which one integrates, ~the linearization ofV on s=s, ,=s'=$; ¢ [4,11], and 9s,®)

X 2 KEo(r 3, i O[KE(r ;)
S1:%2

2
X exd - 2v25b§1+i§d>51](v—|r1—r3|)> . (7

4 8 lies ons; with q(0)=ry andq(t)=r;. In Eq. (7) the integra-
2\ _ _ Ot Ho | aH tions are restricted bjr,—r4| < v because of the finite reso-
M) = jl:[ldrlszl exi(®70 =~ @7 = mM/2)] lution with which two paths can be equatéthis is also

2\ da enflor)ceFd bly the presinqe ofb as r\]/ve \r/]vill s;:le) r;lwmen-

12l V- _ 2 tarily). For long enough times>t", the phase$®; fluctu-

x lHCﬁ (w) exil Vzbbﬁlz)l’ ®) ate randomly and exhibit no correlation between different

) 5 ) trajectories20]. One thus applies the central limit theorem

where we introduced\=27o(-1)'(us, ,~ s, ) @nd P (CLT)  (exdidd)=exg—(6D2)/2]=exg - [ dyVV(0)

=Ps ~Po- -V V(1))|r,—r4/?/2\]. After performing a change of integra-
The expression of Eq’5) is schematically described in  tion variablefdr=.Cs=dp and using the asymptotic expres-

Fig. 1. Classical trajectories are represented by a full line ikjon C,~ (m/t)? exg—\t] [21], one gets

they correspond tbly and a dashed line fdi, with an arrow _

indicating the direction of propagation. In the semiclassical oy = a’exd— 2\t], (8a)
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FIG. 2. Diagrammatic representation of the averaged fidelity varial@d) and the three time-dependent contributions that dominate

semiclassically, together with the contribution giving the long-time
di2

APm?
et? f drVV(0) - V V(7))

a=

(8b)

The second dominant term is obtained fragxs,=s;
=S, 3=5; and s5=Sg, with ry=r3, or equivalentlys,=s,,
$;=53 and s;=5,=55=5 with r,=r,. Therefore this term
comes with a multiplicity of two, and one obtains

2( V2>2d<f drydrg > C

-
X exd - 2v2éb§l +i6Ds 1O(v—|r - r3|)>

75

2
X <fdr22 Cs, exil- vzébz%+i6€g3]> . (9

again with the restrictionr,—rs/<wv. To calculate the first
bracket on the right-hand side of E®), we first average the

saturatiarf@).

2
(V2/7T)d<f dr >, Csexd- v%bﬁ]) =1, (12)

one finally obtains

0% =2a ex{- M]exd - I't]. (13)

The third and last dominant time-dependent term arises
from eithers;=s;, S,=Sg, S3=S4, S5=Sg, andr,=rz, Or s;
=S), =S5, S4=S S7=Sg, andr,=r,. It thus also has a mul-
tiplicity of two and reads

V2 2d
2<_) f drldrzdr3dr42 Csl
w
X expl= A(3pZ + dpZ, + opZ, + )]

2 _
o2= Cs,CsCs.

X exdi(5ss3‘5ss5)]®(7"|r1_r3|)>- (14)

complex exponential, assuming again that enough time haBhe integrations, again, have to be performed With-r ;|

elapsed so that actions are randomized. The CLT give

(exiios, D =exd~5(5)) with
o)=¢[ af domanmatn. o
6%) = Jdt q®)Mal ).

Hereq(?) lies ons; with q(0)=r, andq(t)=r,. In hyperbolic
systems, correlators typically decay exponentially fast,

Ma®)IMaE )]y = exd - nlt-t'[], (11)

with an upper bound ory set by the smallest positive
Lyapunov exponenf24]. One thus obtain$sS; )=I"t. Usu-
ally T €? is identified with the golden rule spreading of
eigenstates oH over those ofH; [5,7]. It is dominated by
the short-time behavior aV[q({ )]V[q(0)]). We stress how-
ever that for long enough time yoct still holds to lead-
ing order even with a power-law decay of the correlator
Mq(®)IVIq{ )]y «|t—t'|"7, providedy is sufficiently large,
n=1. We note that similar expressions such as @d),
relating the decay oM to time integrations over the pertur-
bation correlator, have been derived in R¢&19] using a
different approach than the semiclassical method of Reéf.
used here. Further, using the sum rule

ssv. We incorporate this restriction in the calculation by
making the ergodicity assumption, i.e. setting,

<f dl’ldl’zdl’3dl’4 e (V_ |r1_ I‘3|)>
= heﬁ:<f dr 1dr2dr3dr4 e >®(t - tE), (15)

which is valid for times larger than the Ehrenfest tif@s]
(for shorter timest <tg, the third diagram on the right-hand
side of Fig. 2 goes into the second dn@ne then averages
the phases using the CLT to get

0% = 2hegexd —Tt]O(t - tg). (16)

Subdominant terms are obtained by higher-order contrac-
tions (e.g., setting ,=r, in the second and third graphs on
the right-hand side of Fig.)2They either decay faster, or are
of higher order irti, or both. We only discuss the term that
gives the long-time saturation at the ergodic vatigM)
zﬁgﬁ. For t>tg, there is a phase-fre@and hence time-
independentcontribution with four different paths, resulting
from the contractions;=s;, $,=Sg, =S5, $4=Ss, and ry
=rg, I,=r,4. Its contribution is sketched as the fourth dia-
gram on the right-hand side of Fig. 2. It gives
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V2 2d o g 4/2+d AN a 1/2+d
0}21=<;) fdrldrg,z CSlCSZ O’z(tc)z(FB) (E) [l—m(a)

2 ag 2/2+d
X ex= v(8pg + p)IO(v=r =1 ) . (17) +O<A2 B )} (21)

We explicitly took thet dependence(t) = a4t into account.

From the sum rule of Eq12), and again invoking the long- ; 4 i ’
We estimate thatay<(I'\)"9? (obtained by setting the

time ergodicity of the semiclassical dynamics, ELf), one

obtains the long-time saturation ef(M), Lyapunov time equal to few times the time of flight through
a correlation length of the perturbation potential, as is the
2 =h20(t-tg). (18)  case for billiards or mapsto get o*(t) o (B/\)?¥2>1.

Because & M(t)<1, this value is, however, bounded by
Note that fort<tg, this contribution does not exist by itself M2t ). Since in the other regim& <\, one haso?(t.)
and is included i3, Eq. (8). ~ 2henl 1~ (2her) YT /B], we predict that2(t,) grows dur-

According to our semiclassical approach, the fidelity has g4 the crossover fromii <\ to I'>\, until it saturates at a
variance given to leading order by the sum of the four terms —

of Egs.(8), (13), (16), and (18) non-self-averaging valuer(t.)/M(t.) = 1, independently on
I e and B, with possibly a weak dependence Brand \.
o?.= aPexil— 2] + 2a exf - (A + )t We conclude this analytical section by mentioning that

applying the RMT approach to longer times reproduces Eq.
+ X~ Tt]O(t—te) + Ot ~te). (19  (19) with A—c [28]. This reflects the fact that RMT is
. . . strictly recovered fotg=0 only.
Equation(19) is the central result of this paper. We see that 15 jjystrate our results, we present some numerical data.
for short enough times, i.e., before ergodicity and the saturaye nased our simulations on the kicked rotator model with
tion of M(t) = i and oz(M):hfeff is reached, the first term Hamiltonian[29]
on the right-hand side of19) will dominate as long aa
<T. ForA>T on the other hands2(M) exhibits a behavior
cexd-(N+It] for t<tg, turning into «#zexd -I't] for t
>te. Thus, contrary toM, o?(M) allows us to extract the
Lyapunov exponent from the second term on the right-han
side of Eq.(19) even whem\>T". Also one sees that, unlike
the strong perturbation regim&>B [18], M(t) continues to
fluctuate above the residual varianeei?; up to a time
=I""YIn A4 in the semiclassical regimB>T">A. For I'
<\, I'YIn ¢4/ > tg and M(t) fluctuates beyondk.
The above semiclassical approach breaks down at short M () = (o] (U'5)"(Uo)"| )|, (23
times for which not enough phase is accumulated to motivate . ) B s
a stationary phase approximatif27]. To get the short-time USing the unitary Floguet operatordo=ex-ip*/ 2]

behavior of 0%(M), we instead Taylor expand the time- X€XH-iKoCoSX/%et] and Uy having a perturbed Hamil-
evolution  exponentials egpiH(O>t]:1iiH(o)t—H(20)t2/2 tonianH with K=Ky+ 6K. The quantization procedure results

in a matrix form of the Floquet operators, whose matrix el-
ements inx representation are given by

~2
p
Ho= —
"2

+Kgcosk>, 8(t —n). (22)

n
(yVe concentrate on the reginke> 7, for which the dynamics
is fully chaotic with a Lyapunov exponemt=In[K/2]. We
quantize this Hamiltonian on a torus, which requires us to
consider discrete valuep=2#l/N and x=2xl/N, |
=1,..N, hencefi;z=1/N. The fidelity (1) is computed for
discrete timeg=n, as

+... +O(H(50)t5). The resulting expression fo’(M) contains
matrix elements such &g|H)| %o, a=1,2,3,4,which one ,
then calculates using a random matrix thedBRMT) ap- (Ug),yr :i_exp[iw]ex%_i% cosﬂ).
proach [26] for the chaotic quantized HamiltoniaHl R, N 27 N
[5,8,19. Keeping nonvanishing terms of lowest ordertjn
one has a quartic onset(M) = (24-32 ?)t* for t< 3%, with ; : :
EaE[62(<l//(?|V2|¢0>—<¢O|V|l//0>2)]a/2. RMT gives (33-522) Uo has a Lorentzian shape_wnh a_wuﬂux(5K/ﬁeﬁ)2 (there
PR is a weak dependence of in Kg) in the rangeB=27=T
oc(l“B) , with a system-dependent prefactor of order 1. Fr°m>A:277/N). This is illustrated in the inset to Fig. 6.
this and Eq.(19), one conclgdes_thatz(M) has a nonmo-  Nymerically, the time evolution off, in the fidelity, Eq.
notonous behaV|_or, i.e., |_t first rises at short times, un_tll |t(23), is calculated by recursive calls to a fast Fourier trans-
decays aftegf timé, which one can evaluate by solving form routine. Thanks to this algorithm, the matrix-vector
o5dt)=('B)tZ. In the regimeB>I">\ one gets multiplication Ug st requiresO(N In N) operations instead
g |2 |29 1 o | 2724 of O(N?), and thus allows us to deal with very large system
te=|— 1-A = —— o[\ =2 , sizes. Our data to be presented below correspond to system
I'B 2+d e sizes of up toN=262 144=28 which still allowed us to
(20) collect enough statistics for the calculationf{(M).
We now present our numerical results. Figure 3 shows the
and thus distribution P(M) of M(t) in the regimel’ <\ for different

The local spectral density of eigenstatedJgf over those of
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0.5

P(M) |
0.3

0.1

2 0
M - M)/o

FIG. 3. DistributionP(M) of the fidelity computed for 10dif-
ferent ¢y, for N=32 768, 0K=5.75x 10°° (i.e., [ =~0.09), at times
t=25, 50, 75, and 100 kicks.

times. It is seen that even thoutM) is not normally dis-
tributed, it is still well characterized by its variance. A cal-
culation of 6?(M) is thus meaningful.

We next focus ons? in the golden rule regime with’
<\. Data are shown in Fig. 4. One sees th&tV) first rises
up to a timet,, after which it decays. The maximal value

PHYSICAL REVIEW H, 036223(20095

FIG. 5. Variances?(M) of the fidelity vst in the golden rule
regime with T=\ for N=65536, K;=9.95, and sK e[3.9
X 1075,1.1x 10°%] (open symbols andN=262 144,K,=9.95, 5K
=5.9X 107 (full triangles. The solid line isx exd —2\4t], with an
exponent\;=1.1, smaller than the Lyapunov exponertl1.6, be-
cause the fidelity averagéexg—\t]) (see text The two dashed
lines give#Z,=N"2 In all cases, the variance has been calculated
from 1@ different initial statesyy.

Fig. 5, which corroborates the Lyapunov decay «f{M)
predicted by Egqs8). Note that in Fig. 5, the decay exponent
differs from the Lyapunov exponent=In[K/2] due to the
fact that the fidelity averagelCy) o (exd —\t]) # exd —(\)t]
over finite-time fluctuations of the Lyapunov expongb8].

o2(t,) in that regime increases with increasing perturbationAt long times,a*(M) saturates at the ergodic vale&(M,t

i.e., increasingl’. Beyondt,, the decay ofs? is very well

—x)=hZ,, as predicted. Finally, it is seen in both Figs. 4 and

captured by Eq(16), once enough time has elapsed. This is® thatt. decreases as the perturbation is cranked up. More-

due to the increase af(t,) above the self-averaging value

over, there is nd\ dependence o62(t,) at fixedI'. These

«het asT increases. Once the influence of the peak disaptwo facts are at least in qualitative, if not quantitative, agree-

pears, the decay af’(M) is very well captured byr% given

in Eq. (16), without any adjustable free parameter. Finally, at

large times,o?(M) saturates at the value given in Hd8).
As K increases, so dods andd?(M) decays faster and

faster to its saturation value unfil=\. Oncel starts to

exceed\, the decay saturates at €x@\t). This is shown in

10% 100 200 300
t

FIG. 4. Varianceo?(M) of the fidelity vst for weak <\, N
=16 384 and 1®K=5.9, 8.9, and 14.7(thick solid lines, N
=4096 andsK=2.4x 10 (dashed ling and N=65 536 andsK
=1.48%x 10°° (dotted-dashed lipeAll data haveK,=9.95. The thin
solid lines indicate the decays&gexd-I't], with T
=0.024 8KN)? (there is no adjustable free paramégt@he variance
has been calculated from 3 @ifferent initial states/.

ment with Eq.(20).
The behavior ot?(t.) as a function of is finally shown
in Fig. 6. First we show in the inset the behavior of the local

10"
, b
c(t) ; Qgs
10°F
JEP
L g *
(o3 J
O e
10 ,°
10° 107 0! 10

0 |
r'/B
FIG. 6. Maximal variancer’(t,) as a function ofl'/B, for K,

=10.45,N=4096, N=16 384,N=65 536, andN=262 144 (empty
symbols, andKy=50.45,N=16 384(full circles). The variance has
been calculated from 2ifferent initial statesy,. Inset: the local
spectral density of states(e) of eigenstates of an unperturbed
kicked rotator withKy=12.56 over the eigenstates of a perturbed
kicked rotator withK =K+ 8K, SK=5x 1073, The system sizes are
N=250 (diamond$, N=500 (circles, and N=1000 (squares The
solid lines are Lorentzian with widths~0.0125, 0.05, and 0.0124
in agreement with the formulB=0.024 6KN)?2.
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spectral density oncel exceeds the bandwid®, p(e) is no longer Lorentz-
ian, and the decay of botM(t) and ¢?(M) is no longer
ple) = 2 (¢ | pal*Sle— €0+ €p), (24)  exponential5]. j
@ In conclusion we have applied both a semiclassical and a

RMT approach to calculate the variane&M) of the fidelity
of eigenstate$s ”} (with quasienergy eigenvalueg) of U, M(t) of Eq. (1). We found thai(M) exhibits a nonmonoto-
over the eigenstates,} (with quasienergy eigenvalueg)) nous behavior with time, first increasing algebraically, before
of Ug. As mentioned aboves(e) has a Lorentzian shape decaying exponentially at larger times. The maximum value
with a width given by’ ~0.024 5KN)?. Having extracted of o*(M) is characterized by a non-sel-averaging behavior
theN and 5K dependence dF, we next plot in the main part when the perturbation becomes sizable against the system’s

of Fig. 6 the maximumo?(t.) of the fidelity variance as a Lyapunov exponent.

function of the rescaled width'/B of p(e). As anticipated, This work was supported by the Swiss National Science
o(t,) first increases with™ until it saturates at a value0.1,  Foundation. We thank J.-P. Eckmann and P. Wittwer for dis-
independently orieg, I', or \, oncel’=B. These data con- cussions on structural stability, addAdagideli for discus-
firm Eq. (21) and the accompanying reasoning. Note thatsions at the early stage of this project.
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