Mesoscopic fluctuations of the Loschmidt echo

Cyril Petitjean and Philippe Jacquod

Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland (Received 13 October 2004; revised manuscript received 31 January 2005; published 29 March 2005)

We investigate the time-dependent variance of the fidelity with which an initial narrow wave packet is reconstructed after its dynamics is time reversed with a perturbed Hamiltonian. In the semiclassical regime of perturbation, we show that the variance first rises algebraically up to a critical time t_c , after which it decays. To leading order in the effective Planck's constant h_{eff} , this decay is given by the sum of a classical term \approx exp[-2λ*t*], a quantum term \approx 2 \hbar _{eff} exp[-Γ*t*], and a mixed term \approx 2 exp[-(Γ+λ)*t*]. Compared to the behavior of the average fidelity, this allows for the extraction of the classical Lyapunov exponent λ in a larger parameter range. Our results are confirmed by numerical simulations.

DOI: 10.1103/PhysRevE.71.036223 PACS number(s): 05.45.Mt, 74.40. + k, 03.65.Yz

The fluctuations of a physical quantity often contain more information than its average. For example, quantum signatures of classical chaos are absent of the average density of states, but strongly affect spectral fluctuations $[1]$. In the search for such signatures, another approach has been to investigate the sensitivity to an external perturbation that is exhibited by the quantum dynamics $[2]$. Going back to Ref. [3], the central quantity in this approach is the Loschmidt echo $[4]$, the fidelity

$$
M(t) = |\langle \psi_0 | \exp[iHt] \exp[-iH_0t] | \psi_0 \rangle|^2 \tag{1}
$$

with which an initial quantum state ψ_0 is reconstructed after the dynamics is time reversed using a perturbed Hamiltonian, $H=H_0+\epsilon V$ (we set $\hbar \equiv 1$). This approach proved very fruitful; however, most investigations of $M(t)$ (which we will briefly summarize below) considered the properties of the *average* fidelity $M(t)$, either over different ψ_0 , or different elements of an ensemble of unperturbed Hamiltonians H_0 (having, for instance, the same classical Lyapunov exponent λ) and/or perturbation *V*. Curiously enough, the variance $\sigma^2(M)$ of the fidelity has been largely neglected so far. The purpose of this paper is to fill this gap. We will see that the variance $\sigma^2(M)$ has a much richer behavior than $\overline{M(t)}$, allowing for the extraction of λ in a larger parameter range, and exhibiting a nonmonotonous behavior with a non-selfaveraging maximal value $\sigma(t_c)/M(t_c) \approx 1$.

We first summarize what is known about the average fidelity $M(t)$ in quantum chaotic systems. Three regimes of perturbation strength are differentiated by three energy scales [5]: the energy bandwidth *B* of H_0 , the golden rule spreading $\Gamma = 2\pi \epsilon^2 |\langle \phi_\alpha^{(0)} | V | \phi_\beta^{(0)} \rangle|^2 / \Delta$ of an eigenstate $\phi_\alpha^{(0)}$ of H_0 over the eigenbasis $\{\phi_{\alpha}\}\$ of *H*, and the level spacing $\Delta = B\hbar_{\text{eff}} (\hbar_{\text{eff}} = v^d/\Omega)$ is the effective Planck's constant, given by the ratio of the wavelength volume to the system's volume). These three regimes are: (i) the weak perturbation regime $\Gamma < \Delta$, with a typical Gaussian decay $\overline{M(t)} \approx \exp(-\Delta t)$ $-\overline{\Sigma}^2 t^2$), $\Sigma^2 = \epsilon^2 (\langle \psi_0 | V^2 | \psi_0 \rangle - \langle \psi_0 | V | \psi_0 \rangle^2)$, $\overline{\Sigma}^2 \simeq \Gamma \Delta \hbar_{\text{eff}}^{-1}$ [3,6] (corrections to this Gaussian decay have been discussed in Ref. [7]); (ii) the semiclassical golden rule regime $\Delta < \Gamma$ \leq *B*, where the decay is exponential with a rate set by the smallest of Γ and λ , $M(t) \approx \exp[-\min(\Gamma,\lambda)t]$ [4,5,8]; and (iii) the strong perturbation regime $\Gamma > B$ with another Gaussian decay $\overline{M(t)} \approx \exp(-B^2 t^2)$ [5]. This classification is based on the scheme of Ref. $[5]$, which relates the behavior of $M(t)$ to the local spectral density of eigenstates of H_0 over the eigenbasis of H [5,9]. Accordingly, regime (ii) corresponds to the range of validity of Fermi's golden rule, where the local spectral density has a Lorentzian shape $\vert 5,9,10 \vert$. Quantum disordered systems with diffractive impurities, on the other hand, have been predicted to exhibit golden rule decay ~ expf−G*t*g and Lyapunov decay ~ expf−l*t*g in different time intervals for a single set of parameters $[12]$. It is also worth mentioning that regular systems exhibit a very different behavior, where in the semiclassical regime (ii), $M(t)$ decays as a power law $[13]$ (see also Ref. $[14]$). Finally, while in chaotic systems the averaging procedure has been found to be ergodic, i.e., considering different states ψ_0 is equivalent to considering different realizations of H_0 or *V*, the Lyapunov decay exists only for specific choices where ψ_0 has a well-defined classical meaning, like a coherent or a position state $[4,11,15,16]$.

Investigations beyond this qualitative picture have focused on crossover regions between the regimes (i) and (ii) [7] and deviations from the behavior (iii) ≃exp[-min(Γ , λ)*t*] due to action correlations in weakly chaotic systems [17]. Reference [18] provides the only analytical investigation of the fluctuations of $M(t)$ to date. It shows that, for classically large perturbations, $\Gamma \gg B$, $M(t)$ is dominated by very few exceptional events, so that a typical ψ_0 's fidelity is better described by exp[ln(*M*)], and that *M*(*t*) does not fluctuate after the Ehrenfest time $t_E = \lambda^{-1} \ln[\hbar_{\text{eff}}]$. We will see that these conclusions do not apply to the regime (ii) of present interest. While some numerical data for the distribution of $M(t)$ in the weak perturbation regime (i) were presented in Ref. $[19]$, we focus here on chaotic systems and investigate the behavior of $\sigma^2(M)$ in the semiclassical regime $(ii).$

We first follow a semiclassical approach along the lines of Ref. [4]. We consider an initial Gaussian wave packet $\psi_0(\mathbf{r}_0') = (\pi \nu^2)^{-d/4} \exp[i\mathbf{p}_0 \cdot (\mathbf{r}_0' - \mathbf{r}_0) - |\mathbf{r}_0' - \mathbf{r}_0|^2 / 2 \nu^2]$, and approximate its time evolution by

$$
\langle \mathbf{r} | \exp(-iH_0 t) | \psi_0 \rangle = \int d\mathbf{r}'_0 \sum_s K_s^{H_0}(\mathbf{r}, \mathbf{r}'_0; t) \psi_0(\mathbf{r}'_0),
$$

FIG. 1. Diagrammatic representation of the squared fidelity $M^2(t)$.

$$
K_s^{H_0}(\mathbf{r}, \mathbf{r}'_0; t) = \frac{C_s^{1/2}}{(2\pi i)^{d/2}} \exp[iS_s^{H_0}(\mathbf{r}, \mathbf{r}'_0; t) - i\pi \mu_s/2].
$$
 (2)

The semiclassical propagator is expressed as a sum over classical trajectories (labeled *s*) connecting **r** and \mathbf{r}'_0 in the time *t*. For each *s*, the partial propagator contains the action integral $S_s^H(\mathbf{r}, \mathbf{r}'_0; t)$ along *s*, a Maslov index μ_s , and the determinant C_s of the stability matrix [21]. We recall that this approach allows us to calculate the time evolution of smooth, localized wave packets up to algebraically long times \propto *O*(\hbar ^{-*a*}</sup>_{eff}) \gg *t_E* (with *a* > 0) [22].

The fidelity then reads,

$$
M(t) = \left| \int d\mathbf{r}_1 \int d\mathbf{r}'_0 \int d\mathbf{r}''_0 \psi_0(\mathbf{r}'_0) \psi_0^*(\mathbf{r}''_0)
$$

$$
\times \sum_{s_1, s_2} K_{s_1}^{H_0}(\mathbf{r}_1, \mathbf{r}'_0; t) \left[K_{s_2}^{H}(\mathbf{r}_1, \mathbf{r}''_0; t) \right]^* \right|^2.
$$
(3)

We want to calculate $M^2(t)$. Squaring Eq. (3), we see that $M²(t)$ is given by eight sums over classical paths and 12 spatial integrations. Noting that ψ_0 is a narrow Gaussian wave packet, we first linearize all eight action integrals around \mathbf{r}_0 ,

$$
S_s(\mathbf{r}, \mathbf{r}'_0; t) \simeq S_s(\mathbf{r}, \mathbf{r}_0; t) - (\mathbf{r}'_0 - \mathbf{r}_0) \cdot \mathbf{p}_s. \tag{4}
$$

We can then perform the Gaussian integrations over the eight initial positions \mathbf{r}'_0 , \mathbf{r}''_0 , and so forth. In this way $M^2(t)$ is expressed as a sum over eight trajectories connecting \mathbf{r}_0 to four independent final points \mathbf{r}_i over which one integrates,

$$
M^{2}(t) = \int \prod_{j=1}^{4} d\mathbf{r}_{j} \sum_{s_{i};i=1}^{8} \exp[i(\Phi^{H_{0}} - \Phi^{H} - \pi \mathcal{M}/2)]
$$

$$
\times \left[\prod_{i} C_{s_{i}}^{1/2} \left(\frac{\nu^{2}}{\pi} \right)^{d/4} \exp(-\nu^{2} \delta \mathbf{p}_{s_{i}}^{2}/2) \right], \qquad (5)
$$

where we introduced $\mathcal{M} = \sum_{i=0}^{3} (-1)^{i} (\mu_{s_{2i+1}} - \mu_{s_{2i+2}})$ and $\delta \mathbf{p}_{s_i}$ $=$ **p**_{*s_i* $-$ **p**₀.}

The expression of Eq. (5) is schematically described in Fig. 1. Classical trajectories are represented by a full line if they correspond to H_0 and a dashed line for H , with an arrow indicating the direction of propagation. In the semiclassical limit $S_s \geq 1$ (we recall that actions are expressed in units of \hbar), Eq. (5) is dominated by terms that satisfy a stationary phase condition, i.e., where the variation of the difference of the two action phases

$$
\Phi^{H_0} = S_{s_1}^{H_0}(\mathbf{r}_1, \mathbf{r}_0; t) - S_{s_3}^{H_0}(\mathbf{r}_0, \mathbf{r}_2; t) + S_{s_5}^{H_0}(\mathbf{r}_4, \mathbf{r}_0; t) - S_{s_7}^{H_0}(\mathbf{r}_0, \mathbf{r}_3; t),
$$
\n(6a)

$$
\Phi^{H} = S_{s_2}^{H}(\mathbf{r}_0, \mathbf{r}_1; t) - S_{s_4}^{H}(\mathbf{r}_2, \mathbf{r}_0; t) + S_{s_6}^{H}(\mathbf{r}_0, \mathbf{r}_4; t) - S_{s_8}^{H}(\mathbf{r}_3, \mathbf{r}_0; t),
$$
\n(6b)

has to be minimized. These stationary phase terms are easily identified from the diagrammatic representation as those where two classical trajectories *s* and *s'* of opposite direction of propagation are *contracted*, i.e., $s = s'$, up to a quantum resolution given by the wavelength ν [23]. This is represented in Fig. 2 by bringing two lines together in parallel. Contracting either two dashed or two full lines allows for an almost exact cancellation of the actions, hence an almost perturbation-independent contribution, up to a contribution arising from the finite resolution ν with which the two paths overlap. However when a full line is contracted with a dashed line, the resulting contribution still depends on the action $\delta S_s = -\epsilon \int_s V(\mathbf{q}(t), t)$ accumulated by the perturbation along the classical path *s*, spatially parametrized as $q(t)$. Since we are interested in the variance $\sigma^2(M) = \overline{M^2} - \overline{M}^2$ (this is indicated by brackets in Fig. 2), we must subtract the terms contained in \overline{M}^2 corresponding to independent contractions in each of the two subsets (s_1, s_2, s_3, s_4) and (s_5, s_6, s_7, s_8) . Consequently, all contributions to $\sigma^2(M)$ require pairing of spatial coordinates, $|\mathbf{r}_i - \mathbf{r}_j| \leq \nu$, for at least one pair of indices *i*, *j*=1,2,3,4.

With these considerations, the four dominant contributions to $\sigma^2(M)$ are depicted on the right-hand side of Fig. 2. The first one corresponds to $s_1 = s_2 \approx s_7 = s_8$ and $s_3 = s_4 \approx s_5$ $=s_6$, which requires $\mathbf{r}_1 \simeq \mathbf{r}_3$, $\mathbf{r}_2 \simeq \mathbf{r}_4$. This gives a contribution

$$
\sigma_1^2 = \left(\frac{\nu^2}{\pi}\right)^{2d} \left\langle \int d\mathbf{r}_1 d\mathbf{r}_3 \sum c_{s_1}^2
$$

$$
\times \exp[-2\nu^2 \delta \mathbf{p}_{s_1}^2 + i\delta \Phi_{s_1}] \Theta(\nu - |\mathbf{r}_1 - \mathbf{r}_3|) \right\rangle^2, \quad (7)
$$

where $\delta \Phi_{s_1} = \epsilon \int_0^t dt' \nabla V(\mathbf{q}(t')) [\mathbf{q}_{s_1}(t') - \mathbf{q}_{s_2}(t')]$ arises from the linearization of *V* on $s=s_{1,2} \approx s'=s_{7,8}$ [4,11], and $\mathbf{q}_{s_1}(\tilde{t})$ lies on s_1 with $\mathbf{q}(0) = \mathbf{r}_0$ and $\mathbf{q}(t) = \mathbf{r}_1$. In Eq. (7) the integrations are restricted by $|\mathbf{r}_1 - \mathbf{r}_3| \leq \nu$ because of the finite resolution with which two paths can be equated (this is also enforced by the presence of $\delta \Phi$ _s as we will see momentarily). For long enough times, $t \geq t^*$, the phases $\delta \Phi_s$ fluctuate randomly and exhibit no correlation between different trajectories $[20]$. One thus applies the central limit theorem $\langle \exp[i\delta\Phi_s] \rangle = \exp[-\langle \delta\Phi_s^2 \rangle/2] \approx \exp[-\epsilon^2 \int dt \langle \nabla V(0) \rangle$ $\cdot \nabla V(t)$ |**r**₁−**r**₃|²/2 λ]. After performing a change of integration variable $\int d\mathbf{r} \Sigma_{s} C_{s} = \int d\mathbf{p}$ and using the asymptotic expression $C_s \approx (m/t)^d \exp[-\lambda t]$ [21], one gets

$$
\sigma_1^2 = \alpha^2 \exp[-2\lambda t],\tag{8a}
$$

FIG. 2. Diagrammatic representation of the averaged fidelity variance $\sigma^2(M)$ and the three time-dependent contributions that dominate semiclassically, together with the contribution giving the long-time saturation of $\sigma^2(M)$.

$$
\alpha = \left(\frac{\lambda v^2 m^2}{\epsilon^2 t^2 \int d\tau \langle \mathbf{\nabla} V(0) \cdot \mathbf{\nabla} V(\tau) \rangle} \right)^{d/2}.
$$
 (8b)

The second dominant term is obtained from $s_1 = s_2 \approx s_7$. $=s_8$, $s_3=s_4$ and $s_5=s_6$, with $\mathbf{r}_1 \simeq \mathbf{r}_3$, or equivalently $s_1=s_2$, $s_7 = s_8$ and $s_3 = s_4 \approx s_5 = s_6$ with $\mathbf{r}_2 \approx \mathbf{r}_4$. Therefore this term comes with a multiplicity of two, and one obtains

$$
\sigma_2^2 = 2\left(\frac{\nu^2}{\pi}\right)^{2d} \left\langle \int d\mathbf{r}_1 d\mathbf{r}_3 \sum C_{s_1}^2
$$

$$
\times \exp[-2\nu^2 \delta \mathbf{p}_{s_1}^2 + i\delta \Phi_{s_1}] \Theta(\nu - |\mathbf{r}_1 - \mathbf{r}_3|) \right\rangle
$$

$$
\times \left\langle \int d\mathbf{r}_2 \sum C_{s_3} \exp[-\nu^2 \delta \mathbf{p}_{s_3}^2 + i\delta S_{s_3}] \right\rangle^2, \qquad (9)
$$

again with the restriction $|\mathbf{r}_1 - \mathbf{r}_3| \leq \nu$. To calculate the first bracket on the right-hand side of Eq. (9) , we first average the complex exponential, assuming again that enough time has elapsed so that actions are randomized. The CLT gives $\langle \exp[i\delta S_{s_3}] \rangle = \exp(-\frac{1}{2} \langle \delta S_{s_3}^2 \rangle)$ with

$$
\langle \delta S_{s_3}^2 \rangle = \epsilon^2 \int_0^t d\tilde{t} \int_0^t d\tilde{t}' \langle V[\mathbf{q}(\tilde{t})] V[\mathbf{q}(\tilde{t}')] \rangle. \tag{10}
$$

Here $q(\tilde{t})$ lies on s_3 with $q(0)=r_0$ and $q(t)=r_2$. In hyperbolic systems, correlators typically decay exponentially fast,

$$
\langle V[\mathbf{q}(\tilde{t})]V[\mathbf{q}(\tilde{t}')] \rangle \propto \exp[-\eta |t - t'|], \quad (11)
$$

with an upper bound on η set by the smallest positive Lyapunov exponent [24]. One thus obtains $\langle \delta S_{s_3}^2 \rangle = \Gamma t$. Usually $\Gamma \propto \epsilon^2$ is identified with the golden rule spreading of eigenstates of *H* over those of H_0 [5,7]. It is dominated by the short-time behavior of $\langle V[\mathbf{q}(\tilde{t})]V[\mathbf{q}(0)]\rangle$. We stress however that for long enough times, $\langle \delta S_{s_3}^2 \rangle \propto t$ still holds to leading order even with a power-law decay of the correlator $\langle V[\mathbf{q}(\tilde{t})]V[\mathbf{q}(\tilde{t}')] \rangle \propto |t-t'|^{-\eta}$, provided η is sufficiently large, $\eta \geq 1$. We note that similar expressions such as Eq. (10), relating the decay of M to time integrations over the perturbation correlator, have been derived in Refs. $[6,19]$ using a different approach than the semiclassical method of Ref. $[4]$ used here. Further, using the sum rule

$$
(\nu^2/\pi)^d \bigg(\int d\mathbf{r} \sum C_s \exp[-\nu^2 \delta \mathbf{p}_s^2] \bigg)^2 = 1, \qquad (12)
$$

one finally obtains

$$
\sigma_2^2 = 2\alpha \exp[-\lambda t] \exp[-\Gamma t]. \tag{13}
$$

The third and last dominant time-dependent term arises from either $s_1 = s_7$, $s_2 = s_8$, $s_3 = s_4$, $s_5 = s_6$, and $\mathbf{r}_1 \approx \mathbf{r}_3$, or s_1 $=s_2$, $s_3=s_5$, $s_4=s_6$, $s_7=s_8$, and $\mathbf{r}_2 \simeq \mathbf{r}_4$. It thus also has a multiplicity of two and reads

$$
\sigma_3^2 = 2\left(\frac{\nu^2}{\pi}\right)^{2d} \left\langle \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 d\mathbf{r}_4 \sum C_{s_1} C_{s_2} C_{s_3} C_{s_5} \times \exp[-\nu^2(\delta \mathbf{p}_{s_1}^2 + \delta \mathbf{p}_{s_2}^2 + \delta \mathbf{p}_{s_3}^2 + \delta \mathbf{p}_{s_5}^2)] \times \exp[i(\delta S_{s_3} - \delta S_{s_5})] \Theta(\nu - |\mathbf{r}_1 - \mathbf{r}_3|)\right\rangle.
$$
 (14)

The integrations, again, have to be performed with $|\mathbf{r}_1 - \mathbf{r}_3|$ $\leq \nu$. We incorporate this restriction in the calculation by making the ergodicity assumption, i.e. setting,

$$
\left\langle \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 d\mathbf{r}_4 \dots \Theta(\nu - |\mathbf{r}_1 - \mathbf{r}_3|) \right\rangle
$$

= $\hbar_{eff} \left\langle \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 d\mathbf{r}_4 \dots \right\rangle \Theta(t - t_E),$ (15)

which is valid for times larger than the Ehrenfest time $[25]$ (for shorter times, $t \le t_E$, the third diagram on the right-hand side of Fig. 2 goes into the second one). One then averages the phases using the CLT to get

$$
\sigma_3^2 = 2\hbar_{\text{eff}} \exp[-\Gamma t] \Theta(t - t_E). \tag{16}
$$

Subdominant terms are obtained by higher-order contractions (e.g., setting $\mathbf{r}_2 \simeq \mathbf{r}_4$ in the second and third graphs on the right-hand side of Fig. 2). They either decay faster, or are of higher order in h_{eff} , or both. We only discuss the term that gives the long-time saturation at the ergodic value $\sigma^2(M)$ $\approx \hbar^2_{\text{eff}}$. For $t > t_E$, there is a phase-free (and hence timeindependent) contribution with four different paths, resulting from the contraction $s_1 = s_7$, $s_2 = s_8$, $s_3 = s_5$, $s_4 = s_6$, and r_1 \approx **r**₃, **r**₂ \approx **r**₄. Its contribution is sketched as the fourth diagram on the right-hand side of Fig. 2. It gives

$$
\sigma_4^2 = \left(\frac{\nu^2}{\pi}\right)^{2d} \left\langle \int d\mathbf{r}_1 d\mathbf{r}_3 \sum C_{s_1} C_{s_2} \right\rangle
$$

× exp[- ν^2 ($\delta \mathbf{p}_{s_1}^2 + \delta \mathbf{p}_{s_2}^2$)] Θ (ν - | \mathbf{r}_1 - \mathbf{r}_3 | $)$ $\right\rangle^2$. (17)

From the sum rule of Eq. (12) , and again invoking the longtime ergodicity of the semiclassical dynamics, Eq. (15) , one obtains the long-time saturation of $\sigma^2(M)$,

$$
\sigma_4^2 = \hbar_{\rm eff}^2 \Theta(t - t_E). \tag{18}
$$

Note that for $t \leq t_E$, this contribution does not exist by itself and is included in σ_1^2 , Eq. (8).

According to our semiclassical approach, the fidelity has a variance given to leading order by the sum of the four terms of Eqs. (8) , (13) , (16) , and (18)

$$
\sigma_{\rm sc}^2 = \alpha^2 \exp[-2\lambda t] + 2\alpha \exp[-(\lambda + \Gamma)t]
$$

$$
+ 2\hbar_{\rm eff} \exp[-\Gamma t] \Theta(t - t_E) + \hbar_{\rm eff}^2 \Theta(t - t_E). \tag{19}
$$

Equation (19) is the central result of this paper. We see that for short enough times, i.e., before ergodicity and the saturation of $M(t) \approx h_{\text{eff}}$ and $\sigma^2(M) \approx h_{\text{eff}}^2$ is reached, the first term on the right-hand side of (19) will dominate as long as λ $\langle \Gamma$. For $\lambda \rangle \Gamma$ on the other hand, $\sigma^2(M)$ exhibits a behavior $\propto \exp[-(\lambda+\Gamma)t]$ for $t \leq t_E$, turning into $\propto \hbar_{\text{eff}} \exp[-\Gamma t]$ for *t* $> t_E$. Thus, contrary to \overline{M} , $\sigma^2(M)$ allows us to extract the Lyapunov exponent from the second term on the right-hand side of Eq. (19) even when $\lambda > \Gamma$. Also one sees that, unlike the strong perturbation regime $\Gamma \ge B$ [18], *M*(*t*) continues to fluctuate above the residual variance $\approx \hbar^2_{\text{eff}}$ up to a time $\Gamma = \Gamma^{-1} |\ln \hbar_{\text{eff}}|$ in the semiclassical regime *B*> Γ > Δ . For Γ \ll λ, Γ⁻¹|ln \hbar _{eff}| \gtrdot *t*_{*E*} and *M*(*t*) fluctuates beyond *t_E*.

The above semiclassical approach breaks down at short times for which not enough phase is accumulated to motivate a stationary phase approximation $[27]$. To get the short-time behavior of $\sigma^2(M)$, we instead Taylor expand the timeevolution exponentials exp[$\pm iH_{(0)}t$]=1 $\pm iH_{(0)}t - H_{(0)}^2t^2/2$ $+ \ldots + O(H_{(0)}^5 t^5)$. The resulting expression for $\sigma^2(M)$ contains matrix elements such as $\langle \psi_0 | H_{(0)}^a | \psi_0 \rangle$, $a = 1, 2, 3, 4$, which one then calculates using a random matrix theory (RMT) approach [26] for the chaotic quantized Hamiltonian $H_{(0)}$ [5,8,19]. Keeping nonvanishing terms of lowest order in *t*, one has a quartic onset $\sigma^2(M) \approx (\overline{\Sigma^4} - \overline{\Sigma^2}^2)t^4$ for *t* ≤ Σ^{-1} , with $\Sigma^a = \left[\epsilon^2(\langle \psi_0|V^2|\psi_0\rangle - \langle \psi_0|V|\psi_0\rangle^2)\right]^{a/2}$. RMT gives $(\overline{\Sigma^4} - \overline{\Sigma^2}^2)$ $\propto (\Gamma B)^2$, with a system-dependent prefactor of order 1. From this and Eq. (19), one concludes that $\sigma^2(M)$ has a nonmonotonous behavior, i.e., it first rises at short times, until it decays after a time t_c , which one can evaluate by solving $\sigma_{\rm sc}^2(t_c) = (\Gamma B)^2 t_c^4$. In the regime $B > \Gamma > \lambda$ one gets

$$
t_c = \left(\frac{\alpha_0}{\Gamma B}\right)^{1/2+d} \left[1 - \lambda \left(\frac{\alpha_0}{\Gamma B}\right)^{1/2+d} \frac{1}{2+d} + O\left(\lambda^2 \left\{\frac{\alpha_0}{\Gamma B}\right\}^{2/2+d}\right)\right],\tag{20}
$$

and thus

$$
\sigma^{2}(t_{c}) \simeq (\Gamma B)^{2} \left(\frac{\alpha_{0}}{\Gamma B}\right)^{4/2+d} \left[1 - \frac{4\lambda}{2+d} \left(\frac{\alpha_{0}}{\Gamma B}\right)^{1/2+d} + O\left(\lambda^{2} \left\{\frac{\alpha_{0}}{\Gamma B}\right\}^{2/2+d}\right)\right].
$$
\n(21)

We explicitly took the *t* dependence $\alpha(t) = \alpha_0 t^{-d}$ into account. We estimate that $\alpha_0 \propto (\Gamma \lambda)^{-d/2}$ (obtained by setting the Lyapunov time equal to few times the time of flight through a correlation length of the perturbation potential, as is the case for billiards or maps), to get $\sigma^2(t_c) \propto (B/\lambda)^{2d/2+d} \ge 1$. Because $0 \leq M(t) \leq 1$, this value is, however, bounded by $\overline{M}^2(t_c)$. Since in the other regime $\Gamma \ll \lambda$, one has $\sigma^2(t_c)$ $\approx 2\hbar_{\text{eff}}[1-(2\hbar_{\text{eff}})^{1/4}\sqrt{\Gamma/B}]$, we predict that $\sigma^2(t_c)$ grows during the crossover from $\Gamma \ll \lambda$ to $\Gamma > \lambda$, until it saturates at a non-self-averaging value, $\sigma(t_c)/M(t_c) \approx 1$, independently on \hbar_{eff} and *B*, with possibly a weak dependence on Γ and λ .

We conclude this analytical section by mentioning that applying the RMT approach to longer times reproduces Eq. (19) with $\lambda \rightarrow \infty$ [28]. This reflects the fact that RMT is strictly recovered for $t_F = 0$ only.

To illustrate our results, we present some numerical data. We based our simulations on the kicked rotator model with Hamiltonian $\lceil 29 \rceil$

$$
H_0 = \frac{\hat{p}^2}{2} + K_0 \cos \hat{x} \sum_n \delta(t - n). \tag{22}
$$

We concentrate on the regime $K > 7$, for which the dynamics is fully chaotic with a Lyapunov exponent $\lambda = \ln[K/2]$. We quantize this Hamiltonian on a torus, which requires us to consider discrete values $p_l = 2\pi l/N$ and $x_l = 2\pi l/N$, *l* $=1,...N$, hence $\hbar_{\text{eff}}=1/N$. The fidelity (1) is computed for discrete times *t*=*n*, as

$$
M(n) = |\langle \psi_0 | (U_{\delta K}^*)^n (U_0)^n | \psi_0 \rangle|^2, \tag{23}
$$

using the unitary Floquet operators $U_0 = \exp[-i\hat{p}^2/2\hbar_{eff}]$ \times exp[*−iK*₀cos \hat{x}/\hbar _{eff}] and *U*_{oK} having a perturbed Hamiltonian *H* with $K = K_0 + \delta K$. The quantization procedure results in a matrix form of the Floquet operators, whose matrix elements in *x* representation are given by

$$
(U_0)_{l,l'} = \frac{1}{\sqrt{N}} \exp\left[i\frac{\pi (l-l')^2}{N}\right] \exp\left(-i\frac{NK_0}{2\pi}\cos\frac{2\pi l'}{N}\right).
$$

The local spectral density of eigenstates of $U_{\delta K}$ over those of U_0 has a Lorentzian shape with a width $\Gamma \propto (\delta K / \hbar_{\text{eff}})^2$ (there is a weak dependence of Γ in K_0) in the range $B=2\pi\geq\Gamma$ $\geq \Delta = 2\pi/N$. This is illustrated in the inset to Fig. 6.

Numerically, the time evolution of ψ_0 in the fidelity, Eq. (23) , is calculated by recursive calls to a fast Fourier transform routine. Thanks to this algorithm, the matrix-vector multiplication $U_{0,\delta K}\psi_0$ requires $O(N \ln N)$ operations instead of $O(N^2)$, and thus allows us to deal with very large system sizes. Our data to be presented below correspond to system sizes of up to $N \le 262$ 144=2¹⁸, which still allowed us to collect enough statistics for the calculation of $\sigma^2(M)$.

We now present our numerical results. Figure 3 shows the distribution $P(M)$ of $M(t)$ in the regime $\Gamma < \lambda$ for different

FIG. 3. Distribution $P(M)$ of the fidelity computed for 10^4 different ψ_0 for *N*=32 768, δK =5.75 × 10⁻⁵ (i.e., $\Gamma \approx 0.09$), at times *t*=25, 50, 75, and 100 kicks.

times. It is seen that even though $P(M)$ is not normally distributed, it is still well characterized by its variance. A calculation of $\sigma^2(M)$ is thus meaningful.

We next focus on σ^2 in the golden rule regime with Γ $\ll \lambda$. Data are shown in Fig. 4. One sees that $\sigma^2(M)$ first rises up to a time t_c , after which it decays. The maximal value $\sigma^2(t_c)$ in that regime increases with increasing perturbation, i.e., increasing Γ . Beyond t_c , the decay of σ^2 is very well captured by Eq. (16) , once enough time has elapsed. This is due to the increase of $\sigma^2(t_c)$ above the self-averaging value $~\propto h_{\text{eff}}$ as Γ increases. Once the influence of the peak disappears, the decay of $\sigma^2(M)$ is very well captured by σ_3^2 given in Eq. (16) , without any adjustable free parameter. Finally, at large times, $\sigma^2(M)$ saturates at the value given in Eq. (18).

As δK increases, so does Γ , and $\sigma^2(M)$ decays faster and faster to its saturation value until $\Gamma \geq \lambda$. Once Γ starts to exceed λ , the decay saturates at exp $(-2\lambda t)$. This is shown in

FIG. 4. Variance $\sigma^2(M)$ of the fidelity vs *t* for weak $\Gamma \ll \lambda$, *N* $=16384$ and $10^5 \delta K = 5.9$, 8.9, and 14.7 (thick solid lines), *N* $=4096$ and $\delta K = 2.4 \times 10^{-4}$ (dashed line), and *N*=65 536 and δK $=1.48\times10^{-5}$ (dotted-dashed line). All data have *K*₀=9.95. The thin solid lines indicate the decays= $2\hbar_{eff} \exp[-\Gamma t]$, with Γ $=0.024(\delta KN)^2$ (there is no adjustable free parameter). The variance has been calculated from 10³ different initial states ψ_0 .

FIG. 5. Variance $\sigma^2(M)$ of the fidelity vs *t* in the golden rule regime with $\Gamma \gtrsim \lambda$ for *N*=65 536, *K*₀=9.95, and $\delta K \in [3.9]$ $×10^{-5}$,1.1×10⁻³] (open symbols), and *N*=262 144, *K*₀=9.95, δ*K* $=5.9\times10^{-5}$ (full triangles). The solid line is \propto exp[-2 $\lambda_1 t$], with an exponent $\lambda_1=1.1$, smaller than the Lyapunov exponent $\lambda=1.6$, because the fidelity averages $\langle \exp[-\lambda t] \rangle$ (see text). The two dashed lines give $\hbar_{\text{eff}}^2 = N^{-2}$. In all cases, the variance has been calculated from 10³ different initial states ψ_0 .

Fig. 5, which corroborates the Lyapunov decay of $\sigma^2(M)$ predicted by Eqs. (8) . Note that in Fig. 5, the decay exponent differs from the Lyapunov exponent $\lambda = \ln[K/2]$ due to the fact that the fidelity averages $\langle C_s \rangle \propto \langle \exp[-\lambda t] \rangle \neq \exp[-\langle \lambda \rangle t]$ over finite-time fluctuations of the Lyapunov exponent $[18]$. At long times, $\sigma^2(M)$ saturates at the ergodic value $\sigma^2(M, t)$ $\rightarrow \infty$) = \hbar^2_{eff} , as predicted. Finally, it is seen in both Figs. 4 and 5 that t_c decreases as the perturbation is cranked up. Moreover, there is no *N* dependence of $\sigma^2(t_c)$ at fixed Γ . These two facts are at least in qualitative, if not quantitative, agreement with Eq. (20) .

The behavior of $\sigma^2(t_c)$ as a function of Γ is finally shown in Fig. 6. First we show in the inset the behavior of the local

FIG. 6. Maximal variance $\sigma^2(t_c)$ as a function of Γ/B , for K_0 $=10.45$, $N=4096$, $N=16384$, $N=65536$, and $N=262144$ (empty symbols), and K_0 =50.45, N =16 384 (full circles). The variance has been calculated from 10^3 different initial states ψ_0 . Inset: the local spectral density of states $\rho(\epsilon)$ of eigenstates of an unperturbed kicked rotator with $K_0 = 12.56$ over the eigenstates of a perturbed kicked rotator with $K = K_0 + \delta K$, $\delta K = 5 \times 10^{-3}$. The system sizes are $N=250$ (diamonds), $N=500$ (circles), and $N=1000$ (squares). The solid lines are Lorentzian with widths $\Gamma \approx 0.0125$, 0.05, and 0.0124 in agreement with the formula $\Gamma = 0.024(\delta KN)^2$.

spectral density

$$
\rho(\epsilon) = \sum_{\alpha} |\langle \phi_{\beta}^{(0)} | \phi_{\alpha} \rangle|^2 \delta(\epsilon - \epsilon_{\alpha} + \epsilon_{\beta}), \tag{24}
$$

of eigenstates $\{\phi_{\alpha}^{(0)}\}$ (with quasienergy eigenvalues ϵ_{α}) of U_0 over the eigenstates $\{\phi_{\alpha}\}\$ (with quasienergy eigenvalues $\epsilon_{\alpha}^{(0)}$) of $U_{\delta K}$. As mentioned above, $\rho(\epsilon)$ has a Lorentzian shape with a width given by $\Gamma \approx 0.024(\delta KN)^2$. Having extracted the *N* and δK dependence of Γ , we next plot in the main part of Fig. 6 the maximum $\sigma^2(t_c)$ of the fidelity variance as a function of the rescaled width Γ/B of $\rho(\epsilon)$. As anticipated, $\sigma^2(t_c)$ first increases with Γ until it saturates at a value ≥ 0.1 , independently on \hbar_{eff} , Γ , or λ , once $\Gamma \approx B$. These data confirm Eq. (21) and the accompanying reasoning. Note that

- [1] F. Haake, *Quantum Signatures of Chaos* (Springer, Berlin, 2000).
- [2] R. Schack and C. M. Caves, Phys. Rev. Lett. **71**, 525 (1993).
- $[3]$ A. Peres, Phys. Rev. A 30 , 1610 (1984).
- f4g R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. **86**, 2490 $(2001).$
- [5] Ph. Jacquod, P. G. Silvestrov, and C. W. J. Beenakker, Phys. Rev. E 64 , $055203(R)$ (2001).
- [6] T. Prosen, T. H. Seligman, and M. Znidaric, Prog. Theor. Phys. Suppl. **150**, 200 (2003).
- f7g N. R. Cerruti and S. Tomsovic, Phys. Rev. Lett. **88**, 054103 $(2002).$
- f8g F. M. Cucchietti, C. H. Lewenkopf, E. R. Mucciolo, H. M. Pastawski, and R. O. Vallejos, Phys. Rev. E **65**, 046209 $(2002).$
- f9g D. A. Wisniacki and D. Cohen, Phys. Rev. E **66**, 046209 $(2002).$
- [10] Ph. Jacquod and D. L. Shepelyansky, Phys. Rev. Lett. **75**, 3501 (1995).
- [11] J. Vanicek and E. J. Heller, Phys. Rev. E 68 , 056208 (2003).
- [12] Y. Adamov, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. E 67, 056217 (2003).
- [13] Ph. Jacquod, I. Adagideli, and C. W. J. Beenakker, Europhys. Lett. **61**, 729 (2003).
- [14] J. Emerson, Y. S. Weinstein, S. Lloyd, and D. G. Cory, Phys. Rev. Lett. **89**, 284102 (2002).
- [15] Ph. Jacquod, İ. Adagideli, and C. W. J. Beenakker, Phys. Rev. Lett. **89**, 154103 (2002).
- [16] A. Iomin, Phys. Rev. E 70 , 026206 (2004).
- [17] W. Wang, G. Casati, and B. Li, Phys. Rev. E 69 , $025201(R)$

once Γ exceeds the bandwidth *B*, $\rho(\epsilon)$ is no longer Lorentzian, and the decay of both $M(t)$ and $\sigma^2(M)$ is no longer exponential $\lceil 5 \rceil$.

In conclusion we have applied both a semiclassical and a RMT approach to calculate the variance $\sigma^2(M)$ of the fidelity $M(t)$ of Eq. (1). We found that $\sigma^2(M)$ exhibits a nonmonotonous behavior with time, first increasing algebraically, before decaying exponentially at larger times. The maximum value of $\sigma^2(M)$ is characterized by a non-self-averaging behavior when the perturbation becomes sizable against the system's Lyapunov exponent.

This work was supported by the Swiss National Science Foundation. We thank J.-P. Eckmann and P. Wittwer for discussions on structural stability, and İ. Adagideli for discussions at the early stage of this project.

 $(2004).$

- [18] P. G. Silvestrov, J. Tworzydło, and C. W. J. Beenakker, Phys. Rev. E **67**, 025204(R) (2003).
- [19] T. Gorin, T. Prosen, and T. H. Seligman, New J. Phys. **6**, 20 $(2004).$
- [20] This time t^* is defined by $|\epsilon f_0^t V(\mathbf{q}_s(t), t)| = 1$ for a typical trajectory *s*.
- [21] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, *Chaos: Classical and Quantum* (Niels Bohr Institute, Copenhagen 2003), www.ChaosBook.org
- $[22]$ See e.g., E. J. Heller and S. Tomsovic, Phys. Today $46(7)$, 38 $(1993).$
- [23] Setting $s=s'$ for two trajectories generated by two different Hamiltonians $H = H_0 + \epsilon V$ is justified by the structural stability of hyperbolic systems for not too large ϵ ; see e.g., A. B. Katok and B. Hasselblatt, *Introduction to the Modern Theory of Dynamical Systems* (Cambridge University Press, Cambridge, 1996). In the context of the fidelity, this point was first mentioned in Ref. $[11]$.
- [24] P. Collet and J.-P. Eckmann, J. Stat. Phys. 115, 217 (2004).
- [25] G. P. Berman and G. M. Zaslavsky, Physica A $91, 450$ (1978); M. V. Berry and N. L. Balasz, J. Phys. A 12, 625 (1979).
- [26] M. L. Mehta, *Random Matrices* (Academic, New York, 1991).
- [27] This time is very short, of the order of the inverse energy of the particle, i.e., $O(\hbar_{\text{eff}}^a)$, where $a \ge 0$ depends on the system dimension and the energy-momentum relation. For $E \propto p^2$ and in two dimensions, one has *a*=1.
- [28] C. Petitjean and Ph. Jacquod (unpublished).
- [29] F. M. Izrailev, Phys. Rep. 196, 299 (1990).