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We investigate the time-dependent variance of the fidelity with which an initial narrow wave packet is
reconstructed after its dynamics is time reversed with a perturbed Hamiltonian. In the semiclassical regime of
perturbation, we show that the variance first rises algebraically up to a critical timetc, after which it decays. To
leading order in the effective Planck’s constant"eff, this decay is given by the sum of a classical term
.expf−2ltg, a quantum term.2"eff expf−Gtg, and a mixed term.2 expf−sG+ldtg. Compared to the behav-
ior of the average fidelity, this allows for the extraction of the classical Lyapunov exponentl in a larger
parameter range. Our results are confirmed by numerical simulations.
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The fluctuations of a physical quantity often contain more
information than its average. For example, quantum signa-
tures of classical chaos are absent of the average density of
states, but strongly affect spectral fluctuationsf1g. In the
search for such signatures, another approach has been to in-
vestigate the sensitivity to an external perturbation that is
exhibited by the quantum dynamicsf2g. Going back to Ref.
f3g, the central quantity in this approach is the Loschmidt
echof4g, the fidelity

Mstd = ukc0uexpfiHtgexpf− iH0tguc0lu2 s1d

with which an initial quantum statec0 is reconstructed after
the dynamics is time reversed using a perturbed Hamiltonian,
H=H0+eV swe set";1d. This approach proved very fruit-
ful; however, most investigations ofMstd swhich we will
briefly summarize belowd considered the properties of the
averagefidelity Mstd, either over differentc0, or different
elements of an ensemble of unperturbed HamiltoniansH0
shaving, for instance, the same classical Lyapunov exponent
ld and/or perturbationV. Curiously enough, the variance
s2sMd of the fidelity has been largely neglected so far. The
purpose of this paper is to fill this gap. We will see that the
variances2sMd has a much richer behavior thanMstd, allow-
ing for the extraction ofl in a larger parameter range, and
exhibiting a nonmonotonous behavior with a non-self-
averaging maximal valuesstcd /Mstcd.1.

We first summarize what is known about the average fi-
delity Mstd in quantum chaotic systems. Three regimes of
perturbation strength are differentiated by three energy scales
f5g: the energy bandwidthB of H0, the golden rule spreading

G=2pe2ukfa
s0duVufb

s0dlu2/D of an eigenstatefa
s0d of H0

over the eigenbasishfaj of H, and the level spacing
D=B"eff s"eff=nd/V is the effective Planck’s constant, given
by the ratio of the wavelength volume to the system’s vol-
umed. These three regimes are:sid the weak perturbation re-
gime G,D, with a typical Gaussian decayMstd.exps
−S2t2d, S2;e2skc0uV2uc0l−kc0uVuc0l2d, S2.GD"eff

−1 f3,6g
scorrections to this Gaussian decay have been discussed in
Ref. f7gd; sii d the semiclassical golden rule regimeD,G
,B, where the decay is exponential with a rate set by the
smallest ofG and l, Mstd.expf−minsG ,ldtg f4,5,8g; and

siii d the strong perturbation regimeG.B with another
Gaussian decayMstd.exps−B2t2d f5g. This classification is
based on the scheme of Ref.f5g, which relates the behavior
of Mstd to the local spectral density of eigenstates ofH0 over
the eigenbasis ofH f5,9g. Accordingly, regimesii d corre-
sponds to the range of validity of Fermi’s golden rule, where
the local spectral density has a Lorentzian shapef5,9,10g.
Quantum disordered systems with diffractive impurities, on
the other hand, have been predicted to exhibit golden rule
decay~ expf−Gtg and Lyapunov decay~ expf−ltg in differ-
ent time intervals for a single set of parametersf12g. It is also
worth mentioning that regular systems exhibit a very differ-
ent behavior, where in the semiclassical regimesii d, Mstd
decays as a power lawf13g ssee also Ref.f14gd. Finally,
while in chaotic systems the averaging procedure has been
found to be ergodic, i.e., considering different statesc0 is
equivalent to considering different realizations ofH0 or V,
the Lyapunov decay exists only for specific choices wherec0
has a well-defined classical meaning, like a coherent or a
position statef4,11,15,16g.

Investigations beyond this qualitative picture have
focused on crossover regions between the regimes
sid and sii d f7g and deviations from the behavior
sii d .expf−minsG ,ldtg due to action correlations in weakly
chaotic systemsf17g. Referencef18g provides the only ana-
lytical investigation of the fluctuations ofMstd to date. It
shows that, for classically large perturbations,G@B, Mstd is
dominated by very few exceptional events, so that a typical
c0’s fidelity is better described by expflnsMdg, and thatMstd
does not fluctuate after the Ehrenfest timetE=l−1ulnf"effgu.
We will see that these conclusions do not apply to the regime
sii d of present interest. While some numerical data for the
distribution ofMstd in the weak perturbation regimesid were
presented in Ref.f19g, we focus here on chaotic systems and
investigate the behavior ofs2sMd in the semiclassical regime
sii d.

We first follow a semiclassical approach along the lines of
Ref. f4g. We consider an initial Gaussian wave packet
c0sr 08d=spn2d−d/4expfip0·sr 08−r 0d− ur 08−r 0u2/2n2g, and ap-
proximate its time evolution by

kr uexps− iH0tduc0l =E dr 08o
s

Ks
H0sr ,r 08;tdc0sr 08d,
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Ks
H0sr ,r 08;td =

Cs
1/2

s2pidd/2expfiSs
H0sr ,r 08;td − ipms/2g. s2d

The semiclassical propagator is expressed as a sum over
classical trajectoriesslabeledsd connectingr and r 08 in the
time t. For eachs, the partial propagator contains the action
integralSs

Hsr ,r 08 ; td alongs, a Maslov indexms, and the de-
terminantCs of the stability matrixf21g. We recall that this
approach allows us to calculate the time evolution of smooth,
localized wave packets up to algebraically long times
~Os"eff

−ad@ tE swith a.0d f22g.
The fidelity then reads,

Mstd = UE dr 1E dr 08E dr 09c0sr 08dc0
*sr 09d

3 o
s1,s2

Ks1

H0sr 1,r 08;tdfKs2

Hsr 1,r 09;tdg*U2

. s3d

We want to calculateM2std. Squaring Eq.s3d, we see that
M2std is given by eight sums over classical paths and 12
spatial integrations. Noting thatc0 is a narrow Gaussian
wave packet, we first linearize all eight action integrals
aroundr 0,

Sssr ,r 08;td . Sssr ,r 0;td − sr 08 − r 0d ·ps. s4d

We can then perform the Gaussian integrations over the eight
initial positions r 08, r 09, and so forth. In this wayM2std is
expressed as a sum over eight trajectories connectingr 0 to
four independent final pointsr j over which one integrates,

M2std =E p
j=1

4

dr j o
si;i=1

8

expfisFH0 − FH − pM/2dg

3 Fp
i

Csi

1/2Sn2

p
Dd/4

exps− n2dpsi

2/2dG , s5d

where we introducedM=oi=0
3 s−1disms2i+1

−ms2i+2
d and dpsi

=psi
−p0.

The expression of Eq.s5d is schematically described in
Fig. 1. Classical trajectories are represented by a full line if
they correspond toH0 and a dashed line forH, with an arrow
indicating the direction of propagation. In the semiclassical

limit Ss@1 swe recall that actions are expressed in units of
"d, Eq. s5d is dominated by terms that satisfy a stationary
phase condition, i.e., where the variation of the difference of
the two action phases

FH0 = Ss1

H0sr 1,r 0;td − Ss3

H0sr 0,r 2;td + Ss5

H0sr 4,r 0;td

− Ss7

H0sr 0,r 3;td, s6ad

FH = Ss2

Hsr 0,r 1;td − Ss4

Hsr 2,r 0;td + Ss6

Hsr 0,r 4;td − Ss8

Hsr 3,r 0;td,

s6bd

has to be minimized. These stationary phase terms are easily
identified from the diagrammatic representation as those
where two classical trajectoriess ands8 of opposite direction
of propagation arecontracted, i.e., s=s8, up to a quantum
resolution given by the wavelengthn f23g. This is repre-
sented in Fig. 2 by bringing two lines together in parallel.
Contracting either two dashed or two full lines allows for an
almost exact cancellation of the actions, hence an almost
perturbation-independent contribution, up to a contribution
arising from the finite resolutionn with which the two paths
overlap. However when a full line is contracted with a
dashed line, the resulting contribution still depends on the
action dSs=−eesV(qstd ,t) accumulated by the perturbation
along the classical paths, spatially parametrized asqstd.
Since we are interested in the variances2sMd=M2−M̄2 sthis
is indicated by brackets in Fig. 2d, we must subtract the terms

contained inM̄2 corresponding to independent contractions
in each of the two subsetsss1,s2,s3,s4d and ss5,s6,s7,s8d.
Consequently, all contributions tos2sMd require pairing of
spatial coordinates,ur i −r juøn, for at least one pair of indices
i , j =1,2,3,4.

With these considerations, the four dominant contribu-
tions tos2sMd are depicted on the right-hand side of Fig. 2.
The first one corresponds tos1=s2.s7=s8 and s3=s4.s5
=s6, which requiresr 1. r 3, r 2. r 4. This gives a contribution

s1
2 = Sn2

p
D2dKE dr 1dr 3 o Cs1

2

3 expf− 2n2dps1

2 + idFs1
gQsn − ur 1 − r 3udL2

, s7d

where dFs1
=ee0

t dt8¹V(qst8d)fqs1
st8d−qs7

st8dg arises from
the linearization ofV on s=s1,2.s8=s7,8 f4,11g, andqs1

st̃ d
lies ons1 with qs0d=r 0 andqstd=r 1. In Eq. s7d the integra-
tions are restricted byur 1−r 3uøn because of the finite reso-
lution with which two paths can be equatedsthis is also
enforced by the presence ofdFs as we will see momen-
tarilyd. For long enough times,t@ t* , the phasesdFs fluctu-
ate randomly and exhibit no correlation between different
trajectoriesf20g. One thus applies the central limit theorem
sCLTd kexpfidFsgl=expf−kdFs

2l /2g.expf−e2edtk=Vs0d
·=Vstdlur 1−r 3u2/2lg. After performing a change of integra-
tion variableedrosCs=edp and using the asymptotic expres-
sion Cs.sm/ tdd expf−ltg f21g, one gets

s1
2 = a2expf− 2ltg, s8ad

FIG. 1. Diagrammatic representation of the squared fidelity
M2std.
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a = 1 ln2m2

e2t2E dtk=Vs0d · = Vstdl2
d/2

. s8bd

The second dominant term is obtained froms1=s2.s7
=s8, s3=s4 and s5=s6, with r 1. r 3, or equivalentlys1=s2,
s7=s8 and s3=s4.s5=s6 with r 2. r 4. Therefore this term
comes with a multiplicity of two, and one obtains

s2
2 = 2Sn2

p
D2dKE dr 1dr 3 o Cs1

2

3 expf− 2n2dps1

2 + idFs1
gQsn − ur 1 − r 3udL

3 KE dr 2 o Cs3
expf− n2dps3

2 + idSs3
gL2

, s9d

again with the restrictionur 1−r 3uøn. To calculate the first
bracket on the right-hand side of Eq.s9d, we first average the
complex exponential, assuming again that enough time has
elapsed so that actions are randomized. The CLT gives
kexpfidSs3

gl=exps−1
2kdSs3

2 ld with

kdSs3

2 l = e2E
0

t

dt̃E
0

t

dt̃ 8kVfqst̃ dgVfqst̃ 8dgl. s10d

Hereqst̃d lies ons3 with qs0d=r 0 andqstd=r 2. In hyperbolic
systems, correlators typically decay exponentially fast,

kVfqst̃ dgVfqst̃ 8dgl ~ expf− hut − t8ug, s11d

with an upper bound onh set by the smallest positive
Lyapunov exponentf24g. One thus obtainskdSs3

2 l=Gt. Usu-
ally G~e2 is identified with the golden rule spreading of
eigenstates ofH over those ofH0 f5,7g. It is dominated by
the short-time behavior ofkVfqst̃ dgVfqs0dgl. We stress how-
ever that for long enough times,kdSs3

2 l~ t still holds to lead-
ing order even with a power-law decay of the correlator
kVfqst̃ dgVfqst̃ 8dgl~ ut− t8u−h, providedh is sufficiently large,
hù1. We note that similar expressions such as Eq.s10d,
relating the decay ofM̄ to time integrations over the pertur-
bation correlator, have been derived in Refs.f6,19g using a
different approach than the semiclassical method of Ref.f4g
used here. Further, using the sum rule

sn2/pddSE dr o Cs expf− n2dps
2gD2

= 1, s12d

one finally obtains

s2
2 = 2a expf− ltgexpf− Gtg. s13d

The third and last dominant time-dependent term arises
from either s1=s7, s2=s8, s3=s4, s5=s6, and r 1. r 3, or s1
=s2, s3=s5, s4=s6, s7=s8, andr 2. r 4. It thus also has a mul-
tiplicity of two and reads

s3
2 = 2Sn2

p
D2dKE dr 1dr 2dr 3dr 4 o Cs1

Cs2
Cs3

Cs5

3 expf− n2sdps1

2 + dps2

2 + dps3

2 + dps5

2 dg

3 expfisdSs3
− dSs5

dgQsn − ur 1 − r 3udL . s14d

The integrations, again, have to be performed withur 1−r 3u
øn. We incorporate this restriction in the calculation by
making the ergodicity assumption, i.e. setting,

KE dr 1dr 2dr 3dr 4 . . . Qsn − ur 1 − r 3udL
= "effKE dr 1dr 2dr 3dr 4 . . .LQst − tEd, s15d

which is valid for times larger than the Ehrenfest timef25g
sfor shorter times,t, tE, the third diagram on the right-hand
side of Fig. 2 goes into the second oned. One then averages
the phases using the CLT to get

s3
2 = 2"effexpf− GtgQst − tEd. s16d

Subdominant terms are obtained by higher-order contrac-
tions se.g., settingr 2. r 4 in the second and third graphs on
the right-hand side of Fig. 2d. They either decay faster, or are
of higher order in"eff, or both. We only discuss the term that
gives the long-time saturation at the ergodic values2sMd
."eff

2 . For t. tE, there is a phase-freesand hence time-
independentd contribution with four different paths, resulting
from the contractions1=s7, s2=s8, s3=s5, s4=s6, and r 1
. r 3, r 2. r 4. Its contribution is sketched as the fourth dia-
gram on the right-hand side of Fig. 2. It gives

FIG. 2. Diagrammatic representation of the averaged fidelity variances2sMd and the three time-dependent contributions that dominate
semiclassically, together with the contribution giving the long-time saturation ofs2sMd.
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s4
2 = Sn2

p
D2dKE dr 1dr 3 o Cs1

Cs2

3 expf− n2sdps1

2 + dps2

2 dgQsn − ur 1 − r 3udL2

. s17d

From the sum rule of Eq.s12d, and again invoking the long-
time ergodicity of the semiclassical dynamics, Eq.s15d, one
obtains the long-time saturation ofs2sMd,

s4
2 = "eff

2 Qst − tEd. s18d

Note that fort, tE, this contribution does not exist by itself
and is included ins1

2, Eq. s8d.
According to our semiclassical approach, the fidelity has a

variance given to leading order by the sum of the four terms
of Eqs.s8d, s13d, s16d, ands18d

ssc
2 = a2expf− 2ltg + 2a expf− sl + Gdtg

+ 2"effexpf− GtgQst − tEd + "eff
2 Qst − tEd. s19d

Equations19d is the central result of this paper. We see that
for short enough times, i.e., before ergodicity and the satura-
tion of Mstd."eff ands2sMd."eff

2 is reached, the first term
on the right-hand side ofs19d will dominate as long asl
,G. For l.G on the other hand,s2sMd exhibits a behavior
~expf−sl+Gdtg for t, tE, turning into ~"effexpf−Gtg for t

. tE. Thus, contrary toM̄, s2sMd allows us to extract the
Lyapunov exponent from the second term on the right-hand
side of Eq.s19d even whenl.G. Also one sees that, unlike
the strong perturbation regimeG@B f18g, Mstd continues to
fluctuate above the residual variance."eff

2 up to a time
.G−1uln "effu in the semiclassical regimeB.G.D. For G
!l, G−1uln "effu@ tE andMstd fluctuates beyondtE.

The above semiclassical approach breaks down at short
times for which not enough phase is accumulated to motivate
a stationary phase approximationf27g. To get the short-time
behavior of s2sMd, we instead Taylor expand the time-
evolution exponentials expf±iH s0dtg=1±iH s0dt−Hs0d

2 t2/2
+ . . . +OsHs0d

5 t5d. The resulting expression fors2sMd contains
matrix elements such askc0uHs0d

a uc0l, a=1,2,3,4,which one
then calculates using a random matrix theorysRMTd ap-
proach f26g for the chaotic quantized HamiltonianHs0d
f5,8,19g. Keeping nonvanishing terms of lowest order int,
one has a quartic onsets2sMd.sS4−S2 2dt4 for t!S−1, with
Sa;fe2skc0uV2uc0l−kc0uVuc0l2dga/2. RMT gives sS4−S2 2d
~ sGBd2, with a system-dependent prefactor of order 1. From
this and Eq.s19d, one concludes thats2sMd has a nonmo-
notonous behavior, i.e., it first rises at short times, until it
decays after a timetc, which one can evaluate by solving
ssc

2 stcd=sGBd2tc
4. In the regimeB.G.l one gets

tc = S a0

GB
D1/2+dF1 − lS a0

GB
D1/2+d 1

2 + d
+ OSl2H a0

GB
J2/2+dDG ,

s20d

and thus

s2stcd . sGBd2S a0

GB
D4/2+dF1 −

4l

2 + d
S a0

GB
D1/2+d

+ OSl2H a0

GB
J2/2+dDG . s21d

We explicitly took thet dependenceastd=a0t
−d into account.

We estimate thata0~ sGld−d/2 sobtained by setting the
Lyapunov time equal to few times the time of flight through
a correlation length of the perturbation potential, as is the
case for billiards or mapsd, to get s2stcd~ sB/ld2d/2+d@1.
Because 0øMstdø1, this value is, however, bounded by

M̄2stcd. Since in the other regimeG!l, one hass2stcd
.2"efff1−s2"effd1/4ÎG /Bg, we predict thats2stcd grows dur-
ing the crossover fromG!l to G.l, until it saturates at a

non-self-averaging value,sstcd /M̄stcd<1, independently on
"eff andB, with possibly a weak dependence onG andl.

We conclude this analytical section by mentioning that
applying the RMT approach to longer times reproduces Eq.
s19d with l→` f28g. This reflects the fact that RMT is
strictly recovered fortE=0 only.

To illustrate our results, we present some numerical data.
We based our simulations on the kicked rotator model with
Hamiltonianf29g

H0 =
p̂2

2
+ K0cosx̂o

n

dst − nd. s22d

We concentrate on the regimeK.7, for which the dynamics
is fully chaotic with a Lyapunov exponentl=lnfK /2g. We
quantize this Hamiltonian on a torus, which requires us to
consider discrete valuespl =2pl /N and xl =2pl /N, l
=1, . . .N, hence"eff=1/N. The fidelity s1d is computed for
discrete timest=n, as

Msnd = ukc0usUdK
* dnsU0dnuc0lu2, s23d

using the unitary Floquet operatorsU0=expf−ip̂2/2"effg
3expf−iK0cosx̂/"effg and UdK having a perturbed Hamil-
tonianH with K=K0+dK. The quantization procedure results
in a matrix form of the Floquet operators, whose matrix el-
ements inx representation are given by

sU0dl,l8 =
1

ÎN
expFi

psl − l8d2

N
GexpS− i

NK0

2p
cos

2pl8

N
D .

The local spectral density of eigenstates ofUdK over those of
U0 has a Lorentzian shape with a widthG~ sdK /"effd2 sthere
is a weak dependence ofG in K0d in the rangeB=2p*G
.D=2p /Nd. This is illustrated in the inset to Fig. 6.

Numerically, the time evolution ofc0 in the fidelity, Eq.
s23d, is calculated by recursive calls to a fast Fourier trans-
form routine. Thanks to this algorithm, the matrix-vector
multiplication U0,dKc0 requiresOsN ln Nd operations instead
of OsN2d, and thus allows us to deal with very large system
sizes. Our data to be presented below correspond to system
sizes of up toNø262 144=218, which still allowed us to
collect enough statistics for the calculation ofs2sMd.

We now present our numerical results. Figure 3 shows the
distribution PsMd of Mstd in the regimeG,l for different
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times. It is seen that even thoughPsMd is not normally dis-
tributed, it is still well characterized by its variance. A cal-
culation ofs2sMd is thus meaningful.

We next focus ons2 in the golden rule regime withG
!l. Data are shown in Fig. 4. One sees thats2sMd first rises
up to a timetc, after which it decays. The maximal value
s2stcd in that regime increases with increasing perturbation,
i.e., increasingG. Beyond tc, the decay ofs2 is very well
captured by Eq.s16d, once enough time has elapsed. This is
due to the increase ofs2stcd above the self-averaging value
~"eff as G increases. Once the influence of the peak disap-
pears, the decay ofs2sMd is very well captured bys3

2 given
in Eq. s16d, without any adjustable free parameter. Finally, at
large times,s2sMd saturates at the value given in Eq.s18d.

As dK increases, so doesG, ands2sMd decays faster and
faster to its saturation value untilG*l. Once G starts to
exceedl, the decay saturates at exps−2ltd. This is shown in

Fig. 5, which corroborates the Lyapunov decay ofs2sMd
predicted by Eqs.s8d. Note that in Fig. 5, the decay exponent
differs from the Lyapunov exponentl=lnfK /2g due to the
fact that the fidelity averageskCsl~ kexpf−ltglÞexpf−klltg
over finite-time fluctuations of the Lyapunov exponentf18g.
At long times,s2sMd saturates at the ergodic values2sM ,t
→`d="eff

2 , as predicted. Finally, it is seen in both Figs. 4 and
5 that tc decreases as the perturbation is cranked up. More-
over, there is noN dependence ofs2stcd at fixed G. These
two facts are at least in qualitative, if not quantitative, agree-
ment with Eq.s20d.

The behavior ofs2stcd as a function ofG is finally shown
in Fig. 6. First we show in the inset the behavior of the local

FIG. 3. DistributionPsMd of the fidelity computed for 104 dif-
ferent c0 for N=32 768,dK=5.75310−5 si.e., G<0.09d, at times
t=25, 50, 75, and 100 kicks.

FIG. 4. Variances2sMd of the fidelity vs t for weak G!l, N
=16 384 and 105dK=5.9, 8.9, and 14.7sthick solid linesd, N
=4096 anddK=2.4310−4 sdashed lined, and N=65 536 anddK
=1.48310−5 sdotted-dashed lined. All data haveK0=9.95. The thin
solid lines indicate the decays=2"effexpf−Gtg, with G
=0.024sdKNd2 sthere is no adjustable free parameterd. The variance
has been calculated from 103 different initial statesc0.

FIG. 5. Variances2sMd of the fidelity vs t in the golden rule
regime with G*l for N=65 536, K0=9.95, and dKP f3.9
310−5,1.1310−3g sopen symbolsd, andN=262 144,K0=9.95,dK
=5.9310−5 sfull trianglesd. The solid line is~ expf−2l1tg, with an
exponentl1=1.1, smaller than the Lyapunov exponentl=1.6, be-
cause the fidelity averageskexpf−ltgl ssee textd. The two dashed
lines give"eff

2 =N−2. In all cases, the variance has been calculated
from 103 different initial statesc0.

FIG. 6. Maximal variances2stcd as a function ofG /B, for K0

=10.45, N=4096, N=16 384,N=65 536, andN=262 144sempty
symbolsd, andK0=50.45,N=16 384sfull circlesd. The variance has
been calculated from 103 different initial statesc0. Inset: the local
spectral density of statesrsed of eigenstates of an unperturbed
kicked rotator withK0=12.56 over the eigenstates of a perturbed
kicked rotator withK=K0+dK, dK=5310−3. The system sizes are
N=250 sdiamondsd, N=500 scirclesd, and N=1000 ssquaresd. The
solid lines are Lorentzian with widthsG<0.0125, 0.05, and 0.0124
in agreement with the formulaG=0.024sdKNd2.
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spectral density

rsed = o
a

ukfb
s0dufalu2dse − ea + ebd, s24d

of eigenstateshfa
s0dj swith quasienergy eigenvaluesead of U0

over the eigenstateshfaj swith quasienergy eigenvaluesea
s0dd

of UdK. As mentioned above,rsed has a Lorentzian shape
with a width given byG<0.024sdKNd2. Having extracted
theN anddK dependence ofG, we next plot in the main part
of Fig. 6 the maximums2stcd of the fidelity variance as a
function of the rescaled widthG /B of rsed. As anticipated,
s2stcd first increases withG until it saturates at a value*0.1,
independently on"eff, G, or l, onceG<B. These data con-
firm Eq. s21d and the accompanying reasoning. Note that

onceG exceeds the bandwidthB, rsed is no longer Lorentz-
ian, and the decay of bothMstd and s2sMd is no longer
exponentialf5g.

In conclusion we have applied both a semiclassical and a
RMT approach to calculate the variances2sMd of the fidelity
Mstd of Eq. s1d. We found thats2sMd exhibits a nonmonoto-
nous behavior with time, first increasing algebraically, before
decaying exponentially at larger times. The maximum value
of s2sMd is characterized by a non-self-averaging behavior
when the perturbation becomes sizable against the system’s
Lyapunov exponent.
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